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Acoustic Diagnosis of a Pump by Using Neural Network

Sin-Young Lee*

School of Mechanical Engineering, Kunsan National University,
Miryong-dong, Kunsan, Jeonbuk 573-701, Korea

A fundamental study for developing a fault diagnosis system of a pump is performed by using

neural network. Acoustic signals were obtained and converted to frequency domain for normal

products and artificially deformed products. The neural network model used in this study was

3-layer type composed of input, hidden, and output layer. The normalized amplitudes at the

multiples of real driving frequency were chosen as units of input layer. And the codes of pump

malfunctions were selected as units of output layer. Various sets of teach signals made from

original data by eliminating some random cases were used in the training. The average errors

were approximately proportional to the number of untaught data. Neural network trained by

acoustic signals can detect malfunction or diagnose fault of a given machine from the results.
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1. Introduction

In order to decrease losses caused by failures
of production facilities, it is required to maintain
their maximum operation capacity and find out
the fault of equipments rapidly (Asakura et al.,
2000 ; Staroswiecki, 2000). Many studies have
been performed in order to diagnose machines or
structures and prevent their mal-function (Danai
and Chin, 1991 ; Staszewski, 1998 ; Lin and Qu,
2000; Zang and Imregun, 2001; Chen and Mechefske,
2002 ; Chung et al., 2001). Vibration signals such
as acceleration have been widely used in diagno-
sis of a machine as they have useful information
of target machines (Lin and Qu, 2000 ; Chung et
al., 2001).

The most common health monitoring method
for structures is visual inspection (Zimmerman et
al., 1996) . This method is costly, time-consuming,
and in many cases difficult to perform due to the
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inaccessibility of major portions of the structure.
In addition, visual inspection does not give a
quantitative value for remaining strength of the
structure.

A general method of machine diagnosis is a
series of acquisition and analysis of signals that
are generated from a machine while it works. The
type of signal has been selected and then sensor is
attached as nearly to the position where the signal
is generated as possible. For many reasons the
diagnostic signal is deformed during transfer to
an analyzer. It is a key in the fault diagnosis how
to extract the original features from these de-
formed signals. The processing methods are vari-
ous and have different efficiencies for different
cases. Asakura et al. (2000) and Zang et al. (2001)
performed fault diagnosis by using neural net-
work theory. Bae and Lee (1998) applied a modu-
lar artificial neural network to a reactor system.
Staszewski (1998) and Lin et al.(2000) used wave-
let transform and extracted information on the
fault diagnosis of machines from mixed signals.

The problem of structural health monitoring is
best viewed in the context of a statistical pattern
recognition paradigm (Duffey et al., 2001). This
paradigm can be described as a four-part pro-
cess: 1) operational evaluation, 2) data acquisi-
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tion & cleansing, 3) feature extraction & data
reduction, and 4) statistical model development.
Operational evaluation begins to define why the
monitoring is to be done and to tailor the moni-
toring to unique aspects of the system and unique
features of the damage. The data acquisition por-
tion of the monitoring process involves selecting
(1) the types of sensors to be used, (2) the loca-
tions where the sensors should be placed, (3) the
number of sensors to be used, and (4) the data
acquisition hardware. The area of the structural
monitoring that receives the most attention is fea-
ture extraction. Feature extraction is the process
of identifying damage-sensitive properties, which
are derived from the measured response, and it
allows one to distinguish between the undamaged
and damaged structure.

Neural networks have been used for system iden-
tification. In the most common application, the
neural network is taught to behave like the dy-
namic system of interest. These networks are ty-
pically of the recurrent or feed-forward type and
are trained with gradient based learning algo-
rithms. They have the advantage of being able to
learn nonlinear systems; however, the learning
algorithm is difficult to implement in real time
and tends to converge to a solution very slowly.
Also, the resulting model tends to be a black box
that does not give much insight into the physical
system being modeled (Stech, 1994 ; Kirkegaard
and Rytter, 1994).

Acoustic signals from machines as well as vi-
bration signals always present the dynamic in-
formation of machines while operating. These
signals are believed to be very useful for feature
extraction and fault diagnosis. Acoustic emission
analysis was used to the evaluation of fracture
behavior of steel welds (Na et al., 2006) .

A fundamental study was performed for devel-
oping a system of fault diagnosis of a pump by
using neural network. Acoustic signals were ob-
tained by using a microphone and a amplifier.
The signals were converted to frequency domain,
analyzed and compared for normal products and
artificially deformed products. The deformed cases
used in this study included three types of de-
formed shaft, unequally ground blade, and de-

formed bearing. The signals were obtained in vari-
ous driving frequencies in order to obtain many
types of data from a limited number of pumps.
The acoustic data in frequency domain were man-
aged to multiples of real driving frequency with
the aim of easy comparison. The neural network
model used in this study was 3-layer type com-
posed of input, hidden, and output layer. The
normalized amplitudes at the multiples of real
driving frequency were chosen as units of input
layer. And the codes of pump malfunctions were
selected as units of output layer. Various sets of
teach signals made from original data by elim-
inating some random cases were used in the train-
ing. The average errors were approximately pro-
portional to the number of untaught data. The
results showed that neural network trained by
acoustic signals can be used as a simple method
for detection of malfunction or fault diagnosis of
a given machine.

2. Experimental Apparatus
and Method

The pumps LG PU-250M shown in Fig. | were
used in this study because they have rotating shafts
which can be observed easily at outside while work-
ing and they are simple structure, small size, and
low price. DP104 FFT analyzer of Data Physics
was used as an analyzer, GRAS probe micro-
phones were used as sensors. For references, ac-
celerations were measured and Dytran 3136 ac-
celerometers were used. The acoustic signal was
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Fig. 1 PU-250M pump
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measured at the upper position, amplified by an
amplifier, and transformed by a FFT analyzer.
The mal-function types used in this study in-
cluded three types of (1) deformed shaft by bend-
ing one or more cooling fins, (2) unevenly ground
blade, and (3) damaged bearing. The acoustic sig-
nals were obtained in various driving frequencies
from 54 to 64 Hz in order to obtain many types of
data from a limited number of pumps. A probe
microphone was installed at the 0.25 m over in the
upper direction of the center of pump cover. The
acoustic signals were Fourier transformed by using
a FFT analyzer. The acoustic data in frequency
domain were managed to multiples of real driving
frequency with the aim of easy comparison.
Figures 2~6 show samples of acoustic data
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Fig. 2 Noise of normal pump A driving at 55 Hz
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Fig. 3 Noise of normal pump B driving at 62 Hz
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Fig. 4 Noise of pump C with bended cooling fins
driving at 57 Hz
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Fig. 6 Noise of pump G with damaged bearing
driving at 59 Hz
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transformed to frequency range for the case of
pumps A and B which are normal, pump C with
a bended cooling fin, pump E with unevenly ground
blade, and pump G with damaged bearing balls.
In the case shown in Fig. 2, the peaks were locat-
ed at 1,8,6,4,2 multiples of the driving frequency
in order. In the case of Fig. 4, the peaks were
located at 4,8,2,6,16 multiples in order.

3. Neural Network

A multi-layered perceptron network belongs
to a class of layered feed-forward nets with su-
pervised learning. It is composed of one or more
hidden layers which are placed between the input
and the output layers. Each layer consists of a
number of units which are connected in the struc-
ture of a layered network. The typical architec-
ture is fully interconnected. During the training
phase activation flows are only allowed in one
direction, from the input layer to the output layer
through the hidden layers. That is called a feed-
forward process. The input vector is fed into each
of the first layer units, the outputs of this layer are
fed into each of the second layer units and so on
(Kirkegaard and Rytter, 1994).

The internal state U and output @7 of the 7-th
neuron in the z-th layer are expressed by using
weighting factor W/5" and threshold 7 as in
equation (1).

k

Ur=x3 Wi oy +or (1)
Of=r(U?) (2)

In this paper a deformed sigmoid function was
used as activating function f(x) as shown in
equation (3).

2

flx) = 1+exp(—x/a)

—1 (3)
where ¢ is the constant which shows the gradient
of a activating function.

And neural network uses neuron model as cas-
cade network as shown in Fig. 7. Error back pro-
pagation method (Asakura et al., 2000) was used
in the learning of weighting factors and thresh-
olds. If a neural network of N layers as shown in
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Fig. 7 3-layer neural network

Fig. 7 is considered, the internal state and output
of 7-th neuron in N-th layer are as following
equations (4) and (5) respectively.
k
UN=2 Wi o'+ 0" (4)

J=

OF=£(UY) (5)

An evaluation function J was decided as in equa-
tion (6).

J=3(T—007)2 (6)

where T; is called a teach signal and an expected
output for given input signals. By the error back
propagation method, modifications of weighting
factors and thresholds between the #-th layer
and (n-1)-th layer are like equation (7) and (8)
respectively.

G (new) = Wit (old) + AW (7)
0F (new) =0r (old) +A0F (8)
where
AWJ’?_I’”Z—S% and (9)
n__ .0
AG; 3 307 (10)

€ is a small positive number given in learning
stage.

The neural network model used in this study
was a 3-layer type network as shown in Fig. 7.
The normalized amplitudes at the multiples of a
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Table 1 Samples of peak frequencies in noise

Table 2 Codes of output-layer units

Pump Driving speed Peak freguencies
(Hz) (multiples)
A 52.7 6X-8X -14X-12X-9X
A 59.1 2X-1X-8X-6X-12X
B 53.6 8X-4X-6X-14X -2X
B 60.6 8X-12X-2X-6X-1X
C 58.1 2X-6X-8X-4X-12X
C 61.4 2X-6X-8X-1X-10X
D 57.2 2X-6X-4X-8X-12X
D 60.5 2X-12X-6X-8X -16X
E 56.5 1X-2X-4X-7X-8X
E 58.2 I1X-2X-3X-5X-7X
F 59.4 I1X-2X-6X-4X-11X
F 61.2 IX-2X-11X-6X-4X
G 53.6 8X-6X-10X-14X-16X
G 59.8 8X-6X-12X-1X-2X
H 52.7 8X -1X-10X-12X-14X
H 59.8 6X-2X-8X-1X-10X

real driving frequency such as 1X, 2X, and 8X,
where the amplitudes were relatively larger than
at other multiples of a driving frequency, were
chosen as units of the input layer. Table 1 shows
the samples of peak frequencies in noise. Input
elements were selected from the research of the
peak frequencies. The multiples of a driving fre-
quency selected as input elements in this study
1,2,4,5,6,7,8,10,11,12,13, 14,16, 18,20, 23,
25. And the codes of pump malfunctions, such as

were

1-0-0 for deformed shaft case, were selected as
units of output layer as shown in Table 2. The
number of units of the input and the output layers
were 17 and 3 respectively. The number of units
in the hidden layer was varied from 3 to 56. Each
neural network was composed by random number
generation technique. Weighting factors, thresh-
olds and gradients of activating functions between
input layer units and hidden layer units and those
between hidden layer units and output layer units
of each network were trained by back propaga-
tion method. The evaluation function was decided
as the sum of squares of errors in the output layer,
which were the differences between the teach sig-
nals and the output signals. The weighting factors

Case Code

Normal 0,0,0
Bended cooling fin 1,0,0
Unevenly ground blade 0,1,0
Damaged bearing 0,0, 1

and thresholds were modified by the deepest gra-
dient method.

Various sets of teach signals, which were made
from original data by eliminating some random
cases, were used in the training. The number of
cases in the original data set was 88 and that of
teach signals was varied from 56 to 84. When a
neural network has been trained correctly, its out-
put represents the same code given in Table 2 for
each set of signals. When a neural network has
error, some elements of its output codes are dif-
ferent with the expected codes. An error of each
neural network was calculated for the original
data as a percentage of the cases at which the net-
work failed to show the same type of deformation
as teach signal data.

No. of data set failed to identify
No. of total data set (11)
X 100(%)

Error=

For example, if the expected output of a neural
network for eleventh set of data is (1,0,0) and
the obtained output is (0,0,0), and if the output
codes for all other data set are same with the ex-
pected output codes, then the neural network has
an error 1X100%/88=1.14%. And the errors of
learning for various types of acoustic signals were
compared according to the number of untaught
cases and the number of units in hidden layer.
The average errors were approximately propor-
tional to the number of untaught data, but they
did not show consistent trends for the number of
units in the hidden layer.

4. Results

The errors of failure in identifying the type of
malfunction were calculated for various cases and
various numbers of units in the hidden layer. In
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each case random addresses of the given number
in the learning data were excluded by random
number generation method. The number of cases
was 12 and in each case the number of the hidden
layer units were 3 and, 4,8,12~56. The numbers
of untaught data were 4,8,12~36.

Figure 8 shows the errors as a function of un-
taught data when the number of units in the hid-
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Fig. 8 Errors in the state of 12 hidden layer units
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den layer was 12 as a sample. Figures 9~ 13 show
the averages and standard deviations of errors for
the given number of units in the hidden layer as
the number of untaught data changes.

Figures 9~ 13 are the states where the numbers
of units in the hidden layer were 4,16,28,40,52
respectively as examples. The average errors of
twelve cases increased generally as the number of
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Fig. 11 Errors in the state of 28 hidden layer units
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Fig. 14 Average errors versus no. of units in the
hidden layer

untaught data increased. But the standard devia-
tions of the errors did not increase uniformly. The
average errors were less than 10% if the untrained
data set were less than 24 set or 27%. From that,
more data set is required to be used in training if
the error of fault diagnosis is to be small.

The resultant average errors are shown as the
number of units in the hidden layer increased in
Fig. 14. They showed small errors but did not
show uniform tendency in Fig. 14. Figure 14 shows
lower errors when the numbers of units in the
hidden layer were 4, 12,20, and 44. These results
were given by using 12 random cases where the
untrained data sets were selected by random number
generation method. And the results could be dif-
ferent more or less if other selecting schemes on
the untrained data sets would be used.

5. Concluding Remarks

Acoustic signals were obtained in various driv-
ing frequencies during the operation of pumps.
The acoustic data in frequency domain were man-
aged to multiples of real driving frequency with
the aim of easy comparison. The neural network
model used in this study was 3-layer type and it
was composed of input, hidden, and output layer.
Various sets of teach signals were made from ori-
ginal data sets by eliminating some random cases
and used in the training. The average errors were
approximately proportional to the number of un-
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taught data. The resultant average errors showed
small values but did not show uniform tendency.
The results showed that neural network trained
by acoustic signals can be used as a simple meth-
od for a detection of machine malfunction or fault
diagnosis.
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